

Cyclopropanation with Gold(I) Carbenes by Retro-Buchner Reaction from Cycloheptatrienes

César R. Solorio-Alvarado,[†] Yahui Wang,[†] and Antonio M. Echavarren^{*,†,†}

⁺Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain

[†]Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain

Supporting Information

ABSTRACT: Cationic gold(I) promotes the retro-Buchner reaction of 7-substituted 1,3,5-cycloheptatrienes, leading to gold(I) carbenes that cyclopropanate alkenes.

Gold(I)-catalyzed cyclization of 1,*n*-enynes proceeds through intermediates that can be viewed as highly distorted gold(I) carbenes,¹ which can be trapped by alkenes intra- or intermolecularly in cyclopropanation reactions.^{2,3} Cyclopropanation via gold(I) carbenes has been reported from propargylic carboxylates,⁴ vinyl allenes,⁵ and cylopropenes.⁶ Diazo derivatives have also been commonly used for the cyclopropanation of alkenes in the presence of metal catalysts,⁷ including gold(I).⁸

We have recently found an example of a gold(I)-promoted retro-cyclopropanation in the context of a synthesis of 1,3-disubstituted naphthalenes.⁹ A similar process was also proposed in the gas-phase cleavage of 1-ethoxy-2-methoxycyclopropane with [AuIMes]⁺ [IMes =1,3-bis(2,4,6-trimethylphenyl)imidazol-2ylidene] on the basis of CID experiments and theoretical calculations.¹⁰ Cleavage of cyclopropanes to form metal carbenes had only been reported previously using highly electrophilic PhWCl₃/ RAICl₂ (R = Et, Cl)¹¹ or in reactions of strained bicyclo[1.1.0]butanes with Ni(0) or Rh(I) complexes.¹²

We have now found the first metal-promoted retro-Buchner reaction. 7-Substituted 1,3,5-cycloheptatrienes 1, which are in equilibrium with norcaradienes 2,¹³ react with cationic gold(I) catalysts to generate in situ gold(I) carbenes 3 that cyclopropanate alkenes (Scheme 1). Interestingly, the reverse process, formation of cycloheptatrienes, occurs as a side reaction in the gold(I)catalyzed reaction between ethyl diazoacetate and arenes.¹⁴ In this retro-cyclopropanation, two C–C bonds in norcaradienes 2 are cleaved by Au(I), which is in contrast with that observed in the presence of strong electrophiles such as TeCl₄, wherein a single C–C bond of 2 is cleaved, leading to benzylic chlorides.^{15–18}This new catalytic process is a safe alternative to the use of diazo compounds¹⁹ as carbene precursors.²⁰

7-Substituted 1,3,5-cycloheptatrienes are easily prepared in one step by the addition of organolithium or Grignard reagents to commercially available tropylium tetrafluoroborate.²¹ We first studied the reaction between 7-phenyl-1,3,5-cycloheptatriene and *trans*-stilbene with different Au(I) catalysts A-E (Table 1).^{22,23} No reaction was observed with [Au(PPh₃)(MeCN)]SbF₆ at 23–80 °C. However, when the reaction was carried out in 1,2-dichloro-ethane (DCE) at 80–100 °C with catalyst A, 1,2,3-triphenylcy-clopropane (4a) was obtained in 26–33% yield (entries 1–3).

Scheme 1

 Received:
 June 7, 2011

 Published:
 July 15, 2011

Chart 1. Gold(I)-Catalyzed Cyclopropanation of Alkenes with Cycloheptatrienes 1 (Color Code as in Scheme 1)^a

^aConditions: catalyst **B** (5 mol %) in DCE at 120 °C for 15–19 h. ^bReaction was carried out with catalyst **A** (5 mol %).

The best yield was obtained using catalyst **B** with a more sterically hindered phosphine ligand (entries 5 and 6). Complexes **C** and **D** did not perform satisfactorily, whereas complex **E** with a bulky NHC ligand gave **4a** in slightly lower yields than **B** (entries 10-12). No reaction was observed in the absence of gold(I) catalysts or when the Ag(I) complex analogous to **B** was used.^{22b}

Reactions of cycloheptatrienes 1b-e and 1g with *trans*stilbene led to the formation of cyclopropanes 4b-f in as single stereoisomers using gold(I) catalyst **B** (5 mol %) at 120 °C in DCE (Chart 1). Substituted styrenes provided the corresponding cyclopropanes with trans stereoselectivities, although 4g, 4i, and 4l were obtained as 1:1 mixtures of trans and cis isomers. The trans selectivity was confirmed by the X-ray crystal structure of *trans*-4s. The reaction also proceeded with 1-allyl-4-methylbenzene to give 4y in 59% yield. In the case of (*E*,*E*)-1,4-diphenyl-1,3-butadiene, only the monoadduct 4z could be obtained. The cyclopropanation using vinyl cycloheptatriene **1i** provided 4aain moderate yield using catalyst **A**. The cyclopropanations of 6-chloro-1*H*-indene with **1a**, **1d**, and **1e** led selectively to *exo*tetrahydrocyclopropa[*a*]indenes 4ab-ad.

The reaction of 1-phenyl-1,3-butadiene with cycloheptatriene 1i in the presence of gold(I) catalysts led to *cis*-6,7-diphenylcy-clohepta-1,4-diene (5) in 43-55% yield as the only isolated product as a result of the cyclopropanation at the least-substituted double bond to form 4ae followed by a Cope rearrangement (Scheme 2).

We observed the formation of benzene by ¹H NMR spectroscopy when cycloheptatriene **1e** was heated in tetrachloroethane d_2 at 70–80 °C with complex **B** (5 mol %).²⁴ On the other hand, when the reaction of **1e** was carried out in DCE at 120 °C for 3 h with Ph₂SO (6 equiv) using catalyst **E** (5 mol %), *p*-methoxybenzaldehyde was obtained 34% yield through oxidation of the gold(I) carbene formed in the retro-cyclopropanation.²⁵

The intermediate gold(I) carbenes could also be cleanly trapped intramolecularly. Thus, cycloheptatriene derivative 1j, which was prepared from tropylium tetrafluoroborate in 71% yield, gave exclusively 4af with an exo configuration in 97% yield (Scheme 3). Similarly, we envisioned that a gold(I) carbene formed by retro-cyclopropanation could undergo intramolecular C-H insertion.²⁶ For this purpose, we chose cycloheptatriene 1k as a substrate that could form 2-phenylindane (7) via gold(I) carbene 6. Interestingly, although 7 was indeed obtained in this reaction, the major product was the unsymmetrical biscyclopropane 8, which was formed by trapping of gold(I) carbene 6 with *endo*-norcaradiene 2k. This result highlights the high propensity

of gold(I) carbenes to react with alkenes in cyclopropanation reactions.

We expected that a retro-Buchner reaction of (*trans-2,3*diphenylcyclopropyl)cyclohepta-1,3,5-triene (11) would generate cyclopropyl gold(I) carbene 9, which could evolve to cyclobutene 10^{27} and subsequently (*E,E*)-11 by thermal conrotatory opening (Scheme 4).²⁸ However, reaction of 11 with catalyst **A** led exclusively to (*Z,Z*)-11. This surprising result suggests that intermediate 9 evolves by a mechanism analogous to the skeletal rearrangement of 1,6-enynes,²⁹ bypassing the formation of cyclobutene **10**.

In summary, we have found that cationic Au(I) complexes promote the retro-Buchner reaction of 1,3,5-cycloheptatrienes to form substituted gold(I) carbenes that can be trapped by alkenes in a new cyclopropanation reaction. 1,2,3-Trisubstituted cyclopropanes, which are not easily prepared by other methods, can be synthesized from 1,2-substituted alkenes and readily available 7-substituted 1,3,5-cycloheptatrienes as a safe alternative to the use of explosive diazo compounds.

ASSOCIATED CONTENT

Supporting Information. Additional data, experimental details, characterization data, and crystallographic data (CIF). This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author aechavarren@iciq.es

ACKNOWLEDGMENT

We thank the MICINN (CTQ2010-16088/BQU, Consolider Ingenio 2010 Grant CSD2006-0003, and FPI Predoctoral Fellowship to C.R.S.-A.), the AGAUR (2009 SGR 47), and the ICIQ Foundation for financial support.

REFERENCES

 (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350.
 (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378.
 (c) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268–4315.
 (d) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221.

(2) (a) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029-6032. (b) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez-Núñez, E.; Buñuel, E.; Cárdenas, D. J.; Echavarren, A. M. Chem.—Eur. J. 2006, 12, 1694–1702. (c) Jiménez-Núñez, E.; Raducan, M.; Lauterbach, T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. Angew. Chem., Int. Ed. 2009, 48, 6152–6155. (d) Pérez-Galán, P.; Herrero-Gómez, E.; Hog, D. T.; Martin, N. J. A.; Maseras, F.; Echavarren, A. M. Chem. Sci. 2011, 2, 141–149.

(3) Kim, S. M.; Park, J. H.; Choi, S. Y.; Chung, Y. K. Angew. Chem., Int. Ed. 2007, 46, 6172–6175.

(4) (a) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D.
J. Am. Chem. Soc. 2005, 127, 18002–18003. (b) Gorin, D. J.; Watson,
I. D. G.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 3736–3737.

(5) (a) Lemière, G.; Gandon, V.; Cariou, K.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. *Org. Lett.* **2007**, *9*, 2207– 2209. (b) Lemière, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. *J. Am. Chem. Soc.* **2009**, *131*, 2993–3006.

(6) For a review, see: Miege, F.; Meyer, C.; Cossy, C. Beilstein J. Org. Chem. 2011, 7, 717–734.

(7) (a) Forbes, D. C.; Doyle, M. P. *Chem. Rev.* 1998, 98, 911–935.
(b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, 103, 977–1050. (c) Lindsay, V. N. G.; Nicolas, C.; Charette, A. B. *J. Am. Chem. Soc.* 2011, 133, 8972–8981.

(8) Prieto, A.; Fructos, M. R.; Díaz-Requejo, M. M.; Pérez, P. J.; Pérez-Galán, P.; Delpont, N.; Echavarren, A. M. *Tetrahedron* **2009**, 65, 1790–1793.

(9) Solorio-Alvarado, C. R.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 11881–11883.

(10) (a) Batiste, L.; Fedorov, A.; Chen, P. Chem. Commun. 2010, 46, 3899–3901. (b) Fedorov, A.; Chen, P. Organometallics 2010, 29, 2994–3000. (c) For other metal-promoted gas-phase retro-cyclopropanations, see: Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121–1177.

(11) (a) Gassman, P. G.; Johnson, T. H. J. Am. Chem. Soc. 1976, 98, 6057–6058. (b) Gassman, P. G.; Johnson, T. H. J. Am. Chem. Soc. 1976, 98, 6058–6059. (c) For reductive retro-cyclopropanation in fullerenes, see: Herranz, M. Á.; Cox, C. T.; Echegoyen, L. J. Org. Chem. 2003, 68, 5009–5012.

(12) (a) Ni(0): Takaya, H.; Suzuki, T.; Kumagai, Y.; Hosoya, M.;
 Kawauchi, H.; Noyori, R. J. Org. Chem. 1981, 46, 2854–2861. (b) Rh(I):
 Walczak, M. A. A.; Wipf, P. J. Am. Chem. Soc. 2008, 130, 6924–6925.

(13) (a) Daub, J.; Lüdemann, H.-D.; Michna, M.; Strobl, R. M. *Chem. Ber.* **1985**, *118*, 620–633. (b) McNamara, O. A.; Maguire, A. R. *Tetrahedron* **2011**, *67*, 9–40.

(14) (a) Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284–5288. (b) Rivilla, I.; Gómez-Emeterio, B. P.; Fructos, M. R.; Díaz-Requejo, M. M.; Pérez, P. J. Organometallics 2011, 30, 2855–2860.

(15) Albeck, M.; Tamari, T.; Sprecher, M. J. Org. Chem. 1983, 48, 2276–2278.

(16) For the formation of benzyl-Rh(II) from cycloheptatrienyl-Rh(I) by a metalloradical process, see: Chan, Y. W.; Chan, K. S. *Chem. Commun.* **2011**, *47*, 4802–4804.

(17) The reaction of 7-ethynylcyclohepta-1,3,5-triene with trifluoroacetic acid gives phenylallene by protonation of the alkyne in the norcaradiene tautomer followed by cyclopropane cleavage to form the arenium cation. See: (a) Kitagawa, T.; Kamada, J.; Minegishi, S.; Takeuchi, K. Org. Lett. **2000**, 2, 3011–3013. (b) Minegishi, S.; Kamada, J.; Takeuchi, K.; Komatsu, K.; Kitagawa, T. *Eur. J. Org. Chem.* **2003**, 3497–3504.

(18) 2-Ethoxyethylidene carbene has been generated by photochemical cleavage of a cyclopropanated phenanthrene. See: Graves, K. S.; Thamattoor, D. M.; Rablen, P. R. J. Org. Chem. **2011**, *76*, 1584–1591.

(19) (a) Phenyldiazomethane is explosive at room temperature and should be stored between -20 and -80 °C under N₂ or Ar. See: Creary, X. Org. Synth. **1986**, 64, 207–216. (b) Electron-rich *p*-methoxyphenyl-diazomethane is shock-sensitive and can detonate. It slowly decomposes at -80 °C. See: Closs, G. L.; Moss, R. A. J. Am. Chem. Soc. **1964**, 86, 4042–4053.

Journal of the American Chemical Society

(20) For the use of tosylhydrazone salts as a safe alternative to handling diazo compounds, see: (a) Aggarwal, V. K.; Alonso, E.; Fang, G. Y.; Ferrara, M.; Hynd, G.; Porcelloni, M. *Angew. Chem., Int. Ed.* **2001**, *40*, 1433–1436. (b) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. Eur. J. Org. Chem. **2005**, 1479–1492.

(21) Picotin, G.; Faye, A.; Miginiac, P. Bull. Soc. Chim. Fr. 1990, 127, 245–251.

(22) (a) Herrero-Gómez, E.; Nieto-Oberhuber, C.; López, S.; Benet-Buchholz, J.; Echavarren, A. M. *Angew. Chem., Int. Ed.* **2006**, 45, 5455–5459. (b) Pérez-Galán, P.; Delpont, N.; Herrero-Gómez, E.; Maseras, F.; Echavarren, A. M. *Chem.—Eur. J.* **2010**, *16*, 5324–5332.

(23) Amijs, C. H. M.; López-Carrillo, V.; Raducan, M.; Pérez-Galán, P.; Ferrer, C.; Echavarren, A. M. J. Org. Chem. **2008**, 73, 7721–7730.

(24) Preliminary calculations [DFT B3LYP, 6-31G(d) (C, P, H) and SDD (Au and Ag), CH_2Cl_2] performed with 7-phenylnorcaradiene (2a) and $[Au(PMe_3)]^+$ and $[Ag(PMe_3)]^+$ showed that the metal is directly involved in the electrophilic cleavage of the cyclopropane ring, leading to $[PhCHAu(PMe_3)]^+$ and $[PhCHAg(PMe_3)]^+$ with free energies of activation of 19.62 and 31.71 kcal/mol, respectively. The much higher barrier observed for silver is consistent with the lack of reactivity observed at 100–120 °C in DCE when the Ag(I) analogue of complex **B** was used.

(25) Witham, C. A.; Mauleón, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. **2007**, 129, 5838–5839.

(26) Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. **2009**, 131, 2809–2811.

(27) López-Carrillo, V.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 9292–9294.

(28) Wilcox, C. F.; Carpenter, B. K. J. Am. Chem. Soc. 1979, 101, 3897–3905.

(29) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. *Angew. Chem., Int. Ed.* **2005**, 44, 6146–6148.